Global Optimization in Inverse Problems: a Comparison of Kriging and Radial Basis Functions

نویسندگان

  • W. JACQUET
  • B. TRUYEN
  • P. DE GROEN
  • I. LEMAHIEU
  • J. CORNELIS
چکیده

We study global optimization (GOP) in the framework of non-linear inverse problems with a unique solution. These problems are in general ill-posed. Evaluation of the objective function is often expensive, as it implies the solution of a non-trivial forward problem. The ill-posedness of these problems calls for regularization while the high evaluation cost of the objective function can be addressed with response surface techniques. The global optimization using Radial Basis Function (RBF) as presented by Gutmann [4] is a response surface global optimization technique with regularizing aspects. Alternatively, several publications put forward global optimization using a probabilistic approach based upon Kriging as an efficient technique for non-linear multi modal objective functions, thereby providing a credible stopping rule [5]. After comparing both concepts, we argue that in case of non-linear inverse problems an adaptation of the RBF algorithm seems to be the most promising approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Fidelity Multi-Objective Efficient Global Optimization Applied to Airfoil Design Problems

In this study, efficient global optimization (EGO) with a multi-fidelity hybrid surrogate model for multi-objective optimization is proposed to solve multi-objective real-world design problems. In the proposed approach, a design exploration is carried out assisted by surrogate models, which are constructed by adding a local deviation estimated by the kriging method and a global model approximat...

متن کامل

RBF-Chebychev direct method for solving variational problems

This paper establishes a direct method for solving variational problems via a set of Radial basis functions (RBFs) with Gauss-Chebyshev collocation centers. The method consist of reducing a variational problem into a mathematical programming problem. The authors use some optimization techniques to solve the reduced problem. Accuracy and stability of the multiquadric, Gaussian and inverse multiq...

متن کامل

Determination of a Source Term in an Inverse Heat Conduction Problem by Radial Basis Functions

In this paper, we propose a technique for determining a source term in an inverse heat conduction problem (IHCP) using Radial Basis Functions (RBFs). Because of being very suitable instruments, the RBFs have been applied for solving Partial Dierential Equations (PDEs) by some researchers. In the current study, a stable meshless method will be pro- posed for solving an (I...

متن کامل

The use of inverse quadratic radial basis functions for the solution of an inverse heat problem

‎In this paper‎, ‎a numerical procedure for an inverse problem of‎ ‎simultaneously determining an unknown coefficient in a semilinear ‎parabolic equation subject to the specification of the solution at‎ ‎an internal point along with the usual initial boundary conditions ‎is considered‎. ‎The method consists of expanding the required‎ ‎approximate solution as the elements of the inverse quadrati...

متن کامل

Evaluation of a Surrogate Based Method for Global Optimization

We evaluate the performance of a numerical method for global optimization of expensive functions. The method is using a response surface to guide the search for the global optimum. This metamodel could be based on radial basis functions, kriging, or a combination of different models. We discuss how to set the cyclic parameters of the optimization method to get a balance between local and global...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005